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Who am I, What are we going to talk aboutf,
How does it fit with what you've learned

Graphics perspectives on the SLAM problem,
"volumetric reconstruction”

Enter roboticists; realtime, online,
"frame-to-model registration”

What does it look like in 20137
What easy papers are waiting to be written?




(-G Alex Teichman
Andrej Karpathy
Qianyi Zhou
Fei-Fel LI
Vladlen Koltun
Sebastian Thrun

FGURE-DONORS  Erik Bylow

Juergen Sturm
Thom Whelan

Peter Henry
Radu Rusu
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@Undergrad: Cal

- (2009)
Surgical Robotics

- (2010-2011)
Personal Robotics

Sockification

Ping Chuan (Ted) Wang - Stephen Miller - Mario Fritz
Trevor Darrell - Pieter Abbeel
UC Berkeley

Friday, November 22, 13
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@Grad: Stanford

- (2011)
Existential crisis
- (2012-)
3D Perception:
* Calibration
* Mapping
* Object
Detection ‘

Friday, November 22, 13
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Observation
of p; from p; : e
l = p (Zt le:t’zlzt—l )p (xt le:t—l’ut ’let—l)

W,

—>( tecowstucrionbasics | —»( kanecriuston )—» ( Comaivine |
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@0One graph: poses are related by edges £
i (i): sensor pose at time i 7 AL
A (i,j): how does g .

pose | relate to pose j? |
- : covariance

(pssst, usually identity is fine)
- basically GMapping max log P (v, w)

T, V,W

s.t. Vt xiiq1 = f(xs,ur) + wy

@We still the theory 2 = g(4) + s

d@But it tends to be a Software :: FABMAP

g2o0: A General Framework for Graph Optimization §iSAM (incremental Smoothing and Mapping)

$ sudo apt-get install SLAV] —>( teconsuconbsics )= Kamectisiov J— (- omenoune |

Friday, November 22, 13




3 : how does time T
relate to time T+17?

@ : how can I adjust my
belief to handle new information?

3 : What does the world
look like when I put all
observations fogether?

—>( tecowstucrionbasics | —»( kanecriuston )—» ( Comaivine |

Friday, November 22, 13
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@ SLAM @ Surface Reconstruction

®Map is a means to an end ®Model ("Map”) is the goal
(localization)

@Pose unknown; priors given ®@Pose is [roughly] given;
by IMU/GPS/etc shape used to refine
@Fairly precise sensors @Fairly precise sensors
®Need a pose estimate @Would much rather throw
at every timestep out bad data than use it

(use everything you can!)

(v = —>( tmicrsion J—>  Comeviru |

Friday, November 22, 13
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®@What surface would have
created these scan lines?

@How to scan lines align?

®@Should I use this data or not?

o

e

@ Average out noise

t=T
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@ Output: Digital, high-fidelity surface model

@We roboticists often assume this step is
easy; it isnt!

» .
4 ;
¢ i

c&Lg&&L, Lavowj’s website

(w0 )= tecowsocronsites | —>( kamectsion J—» { Cmenirmune |
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%z Z P 2 2
é M H A=
/ /’ﬂ 7 Y Y

A 4 % Z

ﬁ ; 2

SLOWLY SCAN EVERY CREVICE
>= 30 MINUTES

)= 1 GB (HDL)
-0/ GB (KINECT)

KINECT
1.IMPOINTS PER SECOND

(w0 )= tecowsocronsites | —>( kamectsion J—» { Cmenirmune |
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@Popularized an efficient data structure for keeping track
of visibility information (the )

@Gave for building this data structure from
(basically) any depth sensor at known pose

o1f depth readings are Gaussian, approximation is lossless
(assuming we need to cram it into this data structure)

A Volumetric Method for Building Complex Models from Range Images

Brian Curless and Marc Levoy
Stanford University

Abstract images into a single description of the surface. A set of desirable

A number of techniques have been developed for reconstructing sur- properties for such a surface reconstruction algorithm includes:

faces by integrating groups of aligned range images. A desirable

e Kepresentation of range uncertainty. 1he data 1n g



- Discrete triangles dont quite
capture it

@Ideally, its a curve; a function

7(Z) € {R® > R}

®@Must be parametrized to be learned




@Binary: where is safe to move? (Optional: where havent I
seen?)

- UNOCCUPTED

f(&) € {0,1,7}
[ UNSEEN

®© © o & ©® o o

(1m0 J—>( tecowsmocnonsisics )= kvectsion }—»  Comenismunee |




oFloating point: how far am I from the surface?

+10cm

) QUTSIDE

-00 UNSEEN

®© © o & ©® o o

(1m0 J—>( tecowsmocnonsisics )= kvectsion }—»  Comenismunee |




oFloating point: how far am I from the surface

if I'm close
+D

DCTC=D: QUTSTDE

-1 UNSEEN

@ Truncation limit D should approximate sensor
noise

(1m0 J—>( tecowsmocnonsisics )= kvectsion }—»  Comenismunee |




o () € {R®> — R} is called an
"implicit surface function”

@Can easily turn intfo a mesh or cloud
- Surface = {7 € R°|f(Z) = 0}
(where is my distance 07?)
- Called O crossing, or O isosurface

- Estimate by trilinear inferpolation
+3cm

@0Or add padding
- iso level d : {T € R?|f(Z) = d}

(w0 )= tecowsocronsites | —>( kamectsion J—» { Cmenirmune |
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@Simple example: stationary sensor sl

oHow far is the wall ("d,")?
- Assuming Gaussian noise, it will be the average

dw:%zzt

t

(v J—> —>( fictision )—> ( mannrmone |
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@Simple example: stationary sensor sl

oHow far is the wall ("d,")?
- Assuming Gaussian noise, it will be the average

dw:%zzt

t
@How far is some point ("Z") from the wall?

de =F—dy, =7 — (%Zzt) = %Z(f—zt)

t t

(v J—> —>( fictision )—> ( mannrmone |




@What if we angle it?

®Readings are less
trustworthy at an angle

@Simple averaging is not
sufficient; need to weight samples

|
dz = ) " wy (&
ST
t

JUST A COMMON CotcE; "
(OULD BE FANCTER

(w0 )—> —>( tmicrsion J—>  Comevirun |

Wy X Ty - Ty

Friday, November 22, 13



1 — s . =
d3"— E Wi (T — 2¢) -
> Wy 5 = \
@Weighted averaging can be done online / > /
7. aea. (X — 2¢) + wzdz ¥
T /
W + Wz I(

Wg <— Wt + Wg

(v J—> —>( fictision )—> ( mannrmone |

Friday, November 22, 13



gr s k)

@ Truncate so surfaces dont interfere =i ey < 1D
—D) |z < =D

@Initialize as unknown: dz < 0, wz < 0

(v J—> —>( fictision )—> ( mannrmone |
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Object Recognition from Local Scale-Invariant Features

David G. Lowe
Computer Science Department
University of British Columbia

Vancouver, B.C., V6T 1Z4, Canada
lowe@cs.ubc.ca

Abstract

ject recogmition system has been developed that usesa
Yass of local image fearures. The features are invarianr
age scaling, translation, and rotation, and partially in-
ar o iluminarion changes and affine or 3D projection.
ve features share similar properties with neurons in in-
or temporal cortex that are used for object recognition
vimare vision, Fearures are efficlently detected through
wed filtering approach that identifies stable points in
space, Image keys are created that allow for local ge-
ric deformations by representing blwrred image gradi-
in multiple ovientation planes and at multiple scales,

translation, scaling, and rotation, and partially invaniar
illemination changes and affine or 3D projection. Prev’
approaches 1o local feature generation lacked invariand
scale and were more sensitive to projective distortion
illumination change. The SIFT features share a numbe:
properties in common with the responses of neurons in i
rior temporal (IT) corex in primate vision, This paper &
describes improved approaches 1o indexing and model +
ification.,

The scale-invariant features are efficiently identified
using a staged filiering approach. The first stage ident:
key locations in scale space by looking for locations 1
are maxima or minima of a difference-of-Gaussian funct:

\

W

TR
)
»

e

Sebastian Thrun
Michael Montemerio

Sunford Al Lad
Stnford Ureverity
{thrus sumdc | # starfoed odu

Abstract

This artiche preseats GraphSLAM, o wnifing algorithm for the offine
SLAM protiem. GrophSIAM i closely redated 1o @ recens seguence
of rexearch papers on applying apaimizonon rechmigeres 3 SLAM
probieme. & songforms the SLAN posterior o o graphical set
work, representing the log-Akelihood of she data. It them reduces chis
graph saing varioble climination srchnigues, arriving af @ lower
Amensionay) proddems tha is then sodvedd ssing comventions) opn
mizavon techmigars As @ resall, GospASLAM cam peserate mapy
with 10% or mony feasres, The paper dscusses @ preedy slporivhes
— )

The GraphSLAM
Algorithm with
Applications to
Large-Scale Mapping
of Urban Structures

prisingly, some of he primsary work in this acea has emerged
froms & nember of different scientific Sclds, such s pho-
logrammetry, competer vision (Tomas and Kanade 1992,

Pollefeys, Koch, and Gool 1995, Soamo snd Brocken 1998),

computer graphics (Levoy 1999; Resinkiewicz and Levoy
2001), and robotics (Dissasayake of o, 2001 )

In the SLAM community (SLAM is short for simeltancous
localization and mapping), filter technigues such m the well-
studied extended Kalman filier (EKF) have beoome a method
of chowe for model acquisition. The EKF was mtroduced
mathematicallly by Choes- F T I C1986), and il

ANANLINEAINRNI NN

FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance
Mark Cummins and Paul Newman
The International Journal of Robotics Research 2008 27: 647
DOI: 10.1177/027836490809096 1

The online version of this article can be found at:
hitp:iijr.sagepub.com/content/27 /6/647

Published by:
SSAGE

hitpwww._sagepublications. com

On behalf of:

\lis

Mutimedia Archives

«eys are wsed as inpur 10 @ nearest-neighbor indexing
20d that identifies candidate object matches. Final veri-

Yo wed g !

el

the local image reeion s»—-

A New Extension of the Kalman Filter to Nonlinear
Systems

Simon J. Julier Jeffrey K. Uhlmann
8ijuCrobots.ox.ac.uk uhlzann@robots.ox.ac.uk
The Robotios Research Group, Degartment of Engincoring Sclence, The University of Oxfoed
Oxfoed, OX1 3PJ, UK, Phose: +44-1865-252150, Faoe: +44- 1865273908

ABSTRACT

The Kalman flter{ KF) is oo of the most widely used mothods for teacking and estimation doe to its simplici
optimality, tesctability and robustness. Howewer, the application of the KF 1o ncalinesr systems can be diffice
The most common appeoach is to uwe the Extendod Kalman Filter (EKF) which simply linearises all nosline
models so that the traditional lisear Kalman filter ean be appliod. Although the EXF (in its many forms) is
widely used flltering steategy, over thirty years of experience with it has Jod o a general coosensus within b
tracking and control comeusnity that it is difficedt to knplement, difficult to tuse, and only reliable for systen
which are almscst linear oa the time scale of the update intervals.

In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discrete
samnpled polnts can be used to parameterise mean and covarlance, the estimator yields performance equivalent

the KF foe “war systews yet generalises elegantly to noalinear systems with~ “wtiom ster= r

Each point is used to generate a feature vector that descris
a0 its seale-eme

FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem

Michael Montemerdo and Sebastian Thrun
Schoal of Computer Scence
Carncgic Mellon Usiversity
Pinsburgh, PA 15213
mundle @ cx cmu od, thruei o cms odu

Abstract

The abiity %0 simmitecssly localiae & bt and
carsiely sap it susroundisgs i comsidered by musry 0
be 2 key presogeisie of truly sstonomo robots. How
ovar, few approachos %o ths probiom scale op 10 handle
D very large sumber of landmarks presest in real enve
ronments. Kaboun filier based alpoeithess, for example,
roquare time quadratic is the samber of landmarks o in
corporsse cach sensor obworvation. This paper prosents
FastSLAM. a0 alporithn thae recunsively estumates the
full postersot distribumon over sobudt pose and lasdrrark
locations, yet scales logarithrmically with the samber of
laadraris i the map This Algonthem i hased on as e
oot Sacaorination of the posterior im0 & product of con
ditioeal landmueh ditributions sad & ditribution over
robot pathn. The algorithes has boes run sscoesfully
On a many as 50000 badmarks, eavronments far be
youud the seach of previous approsches. Experimestal
results demsonnstrale the advastages and lirmitations of
e FauSLAM algorithn on both simslatod snd seal-
workd data

Introdwction

Daphne Koller and Ben Wegbreit
Computer Science Department
Stnfond University
Sunford, CA 94305.9010
holler@® ¢ stanford odu, ben® wegbreil com

A key limitation of EKF-based approaches is their compu
tatonal complexity. Sensor updates require time guadratic
n the sumber of landmarks A 10 compute. This complex
ity stems from the fact that the covanance matrix maintained
by the Kalman filiers has Of K™ elements, all of which must
be updated even if just a smgle admark is observed. The
quadratic complexsty limits the nember of landmarks that
can be handled by this approach 10 only a few hendred
whereas nateral environment models froguently comtain mil
Bons of features. This shomcoming has long been recog
nized by the rescarch community (6.5, 14),

In this paper we approach e SLAM problem from
Baycsisn posst of view, Figure | llustrsies & penerative
probabilistic model (dynamic Bayes sctwork ) that underises
the rich corpus of SLAM lterature, In partcelar, the robot
poses, denoted &, &, ..., &, evolve over time as & function
of the robot controls, denoted w, . .., wy. Each of the lasd.
mark messurcmests, desoled 2y, .. ., 2, i 8 fenction of e
postion &, of the landmark messured and of the robot pose
o the time the measurement was taken. From this Sagram it
s evidest that the SLAM problem eahibits important condi-
tonal independeaces. In paticuler, knowledge of e robot’s

ol Ay 8y, L 8y e oo -

iISAM: Fast Incremental Smoothing and Mapping with Efficient Data Association

Michael Kacss, Ananth Ranganathan, and Frank Dellaen
Cemer for Robotics and Istelligent Machines, College of Competiag
Georgia Inwtitise of Technology, Atlants, GA 30332
[ kacss ananth dellaert | @ oc gatech ode

localleation and mappleg (SLAM) that sddrowes the data soo-
dation problem asd allows real-lime application i largescale
avironments. We employ smothing % obaain the

fee

| L

lu-l-.(a-ar-'t Margnals

Fg 1. Only » wnall sember of ootnes of the Sonse covarance maeria we
of imterowt for dets sociation. e i oxample, e manpaals Sotworn B
B poset 13 and B0 Raadmars [; and 1y sw mereved. The osmrios thae neod
W b calindnnd i ponorsl e markad in g Only O irianpeder Movks o
e Saponsd and Dee et Mk codumn e sooded, dee 0 spmmetry. Bl
oo owr lxctorod focmetion matriy roprosentation. e last codumn cmn B
obtained by smple Sach-ssbstimstion. The Socks on e Gugonal can clher
be caloudasod enacdy by ealy callodating de curios conmpoadag @ aoe-
2vos I B wpunse Donor IR, or appronioased by comservativg oximetes for
iwlow ek arnnisiom

Filiering algorirts

Real-time 3D visual SLAM with a hand-held RGB-D camera

Nikolas Engelhard® Felix Endres*®

The practical applications of 3D model acquisition are
manifold. In this paper, we present cur RGB.D SLAM
system, Le., s approach 10 geserate colored 3D models
of objects and indoor scenes using the hand-held Microsoft
Kinect sensoe. Our approach consists of four processing
steps as illustrated in Figure 1. First, we extract SURF
festures from the incoming color images, Then we malch
these features against features from the previous images. By
ovaluating the depth images st the Jocations of these feature
points, we obtxin a set of potmtowise 3D correspoadences
betwoen any two frames. Based on these correspondences,
we estimate the relative raasformation between the frames
using RANSAC. The third step is %0 improve this imitial
estimate using & vasiant of the ICP algocithm (1], As the
pair-wise pose estimates between frames are not necessarily
globally consistent, we optimize the resulting pose graph in
the fourth step using a pose graph solver [4]. The output
of our aslgorithm is a ghobally consistent 3D model of
the peroeiver’ “nvirommer* . represented as 2 colored point

Jurgen Hess®

Jirgen Sturm®™ Wolfram Burgard®

Fig. 1: The fowr processing steps of owr approach.
approach generates colored 3D enmvironment models £
mages acquired with a hand-held Kinect sensor.
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@Curless & Levoy:
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@ Simple works well enough

n

3cm
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@March over all voxels in parallel
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ixels checked in parallel

should look like from the
signs

current vantage point
stop when TSDF changes

@See what the current model
@March along each pixel ray,
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@8 neighboring voxels makes a "cube

@Classic method for finding O crossing
@Lookup table for all (2°) possibilities,
use actual distance values to refine position

@Voxel centers have positive or

7

dAll cubes done in parallel
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(Raycast from the TSDF) \

Simpleg known technique
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If every component is simple, we
can afford to use all data
all the time

For noisy pointclouds, its important
to have something clean to align to

To get clean surfaces, dont throw
out information. Empty space is an
observation.

(w0 )—>( teonsmucmonbisles ) —»( Kveciuston )—»
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@Kinect Fusion averages over
all space, all the time

N

a2GPU Memory “= 1GB

a(1GB) / (sizeof(float d)+sizeof(float w))
= 512 x 512 x 512 voxels
= 3m X 3m X 3m (for émm voxels)

@Space goes with length”3. Moores law wont solve
this any time soon.
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@Insight: treat TSDF as
cyclical buffer o
- AsS camera moves,
slices pop out and |
are meshed ' | 4

aAdded color to registration step 3 ol
-Helps with precision issues " :

@Similar concepts developed
independently in > pcl
(kinfu_large_scale_app)




@Dense TSDF is wasteful

@ Insight: Empty space should
have much bigger bins

@My independent
(unpublished) version: _
- Hierarchical visibility checks %
- ~1/5th realtime on CPU s

P

- http://github.com/sdmiller/cpu_tsdf.git

Friday, November 22, 13


http://github.com/sdmiller/cpu_tsdf.git
http://github.com/sdmiller/cpu_tsdf.git
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@ TSDF stores how far everything is
to surface; why bother with
synthetic clouds or ICP?

@Insight: minimize Signed Distance
(f(x)) directly! N &

SR R WO e

Gt ' Tp)? : ,;,2 ;

Algorithm Resolution Teddy (RMSE) | Desk (RMSE) Plant (RM.

@Newtons method
on analytic
gradient + Hessian

00D ENOUGH FOR WATERTIGHT MODELS
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Combine SLAM and KinFu

-Run KinFu over and over
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Two-pass registration for points of interest
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Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM

Thomas Whelan, John McDonald
Department of Computer Science, NUI Maynooth

Michael Kaess, John J. Leonard,
Computer Science and Atrtificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology (MIT)
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- Everything runs SLAM and KinectFusion,
staples together the output

- None update the TSDF to account for
closure -- how do we do it?

-“frame-to-model” means we cant recover
from bad models. How do we detect failure?

-We output a mesh or cloud. Why not use
the TSDF? TSDF localization, TSDF object
detection, TSDF segmentation?

(w0 )—>( teonsmucmonbisles ) —»( Kveciuston )—»
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